// Copyright 2010 D1plo1d // LGPL 2.1 //test_involute_curve(); //test_gears(); //demo_3d_gears(); // Geometry Sources: // http://www.cartertools.com/involute.html // gears.py (inkscape extension: /usr/share/inkscape/extensions/gears.py) // Usage: // Diametral pitch: Number of teeth per unit length. // Circular pitch: Length of the arc from one tooth to the next // Clearance: Radial distance between top of tooth on one gear to bottom of gap on another. module gear(number_of_teeth, circular_pitch=false, diametral_pitch=false, pressure_angle=20, clearance = 0) { if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch"); //Convert diametrial pitch to our native circular pitch circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch); // Pitch diameter: Diameter of pitch circle. pitch_diameter = number_of_teeth * circular_pitch / 180; pitch_radius = pitch_diameter/2; // Base Circle base_diameter = pitch_diameter*cos(pressure_angle); base_radius = base_diameter/2; // Diametrial pitch: Number of teeth per unit length. pitch_diametrial = number_of_teeth / pitch_diameter; // Addendum: Radial distance from pitch circle to outside circle. addendum = 1/pitch_diametrial; //Outer Circle outer_radius = pitch_radius+addendum; outer_diameter = outer_radius*2; // Dedendum: Radial distance from pitch circle to root diameter dedendum = addendum + clearance; // Root diameter: Diameter of bottom of tooth spaces. root_radius = pitch_radius-dedendum; root_diameter = root_radius * 2; half_thick_angle = 360 / (4 * number_of_teeth); union() { rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001); for (i= [1:number_of_teeth]) //for (i = [0]) { rotate([0,0,i*360/number_of_teeth]) { involute_gear_tooth( pitch_radius = pitch_radius, root_radius = root_radius, base_radius = base_radius, outer_radius = outer_radius, half_thick_angle = half_thick_angle); } } } } module involute_gear_tooth( pitch_radius, root_radius, base_radius, outer_radius, half_thick_angle ) { pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius ); outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius ); base1 = 0 - pitch_to_base_angle - half_thick_angle; pitch1 = 0 - half_thick_angle; outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle; b1 = polar_to_cartesian([ base1, base_radius ]); p1 = polar_to_cartesian([ pitch1, pitch_radius ]); o1 = polar_to_cartesian([ outer1, outer_radius ]); b2 = polar_to_cartesian([ -base1, base_radius ]); p2 = polar_to_cartesian([ -pitch1, pitch_radius ]); o2 = polar_to_cartesian([ -outer1, outer_radius ]); // ( root_radius > base_radius variables ) pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius ); root1 = pitch1 - pitch_to_root_angle; root2 = -pitch1 + pitch_to_root_angle; r1_t = polar_to_cartesian([ root1, root_radius ]); r2_t = polar_to_cartesian([ -root1, root_radius ]); // ( else ) r1_f = polar_to_cartesian([ base1, root_radius ]); r2_f = polar_to_cartesian([ -base1, root_radius ]); if (root_radius > base_radius) { //echo("true"); polygon( points = [ r1_t,p1,o1,o2,p2,r2_t ], convexity = 3); } else { polygon( points = [ r1_f, b1,p1,o1,o2,p2,b2,r2_f ], convexity = 3); } } // Mathematical Functions //=============== // Finds the angle of the involute about the base radius at the given distance (radius) from it's center. //source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html function involute_intersect_angle(base_radius, radius) = sqrt( pow(radius/base_radius,2) - 1); // Polar coord [angle, radius] to cartesian coord [x,y] function polar_to_cartesian(polar) = [ polar[1]*cos(polar[0]), polar[1]*sin(polar[0]) ]; // Test Cases //=============== module test_gears() { gear(number_of_teeth=51,circular_pitch=200); translate([0, 50])gear(number_of_teeth=17,circular_pitch=200); translate([-50,0]) gear(number_of_teeth=17,diametral_pitch=1); } module demo_3d_gears() { //double helical gear // (helics don't line up perfectly - for display purposes only ;) translate([50,0]) { linear_extrude(height = 10, center = true, convexity = 10, twist = -45) gear(number_of_teeth=17,diametral_pitch=1); translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45) gear(number_of_teeth=17,diametral_pitch=1); } //spur gear translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0) gear(number_of_teeth=17,diametral_pitch=1); } module test_involute_curve() { for (i=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) { translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5); } }