/** * ConfigurationStore.cpp * * Configuration and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ #define EEPROM_VERSION "V19" /** * V19 EEPROM Layout: * * ver * axis_steps_per_unit (x4) * max_feedrate (x4) * max_acceleration_units_per_sq_second (x4) * acceleration * retract_acceleration * travel_acceleration * minimumfeedrate * mintravelfeedrate * minsegmenttime * max_xy_jerk * max_z_jerk * max_e_jerk * home_offset (x3) * * Mesh bed leveling: * active * mesh_num_x * mesh_num_y * z_values[][] * zprobe_zoffset * * DELTA: * endstop_adj (x3) * delta_radius * delta_diagonal_rod * delta_segments_per_second * * ULTIPANEL: * plaPreheatHotendTemp * plaPreheatHPBTemp * plaPreheatFanSpeed * absPreheatHotendTemp * absPreheatHPBTemp * absPreheatFanSpeed * * PIDTEMP: * Kp[0], Ki[0], Kd[0], Kc[0] * Kp[1], Ki[1], Kd[1], Kc[1] * Kp[2], Ki[2], Kd[2], Kc[2] * Kp[3], Ki[3], Kd[3], Kc[3] * * PIDTEMPBED: * bedKp, bedKi, bedKd * * DOGLCD: * lcd_contrast * * SCARA: * axis_scaling (x3) * * FWRETRACT: * autoretract_enabled * retract_length * retract_length_swap * retract_feedrate * retract_zlift * retract_recover_length * retract_recover_length_swap * retract_recover_feedrate * * volumetric_enabled * * filament_size (x4) * * Z_DUAL_ENDSTOPS * z_endstop_adj * */ #include "Marlin.h" #include "language.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "ConfigurationStore.h" #ifdef MESH_BED_LEVELING #include "mesh_bed_leveling.h" #endif // MESH_BED_LEVELING void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) { uint8_t c; while(size--) { eeprom_write_byte((unsigned char*)pos, *value); c = eeprom_read_byte((unsigned char*)pos); if (c != *value) { SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE); } pos++; value++; }; } void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) { do { *value = eeprom_read_byte((unsigned char*)pos); pos++; value++; } while (--size); } #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) //====================================================================================== #define DUMMY_PID_VALUE 3000.0f #define EEPROM_OFFSET 100 #ifdef EEPROM_SETTINGS void Config_StoreSettings() { float dummy = 0.0f; char ver[4] = "000"; int i = EEPROM_OFFSET; EEPROM_WRITE_VAR(i, ver); // invalidate data first EEPROM_WRITE_VAR(i, axis_steps_per_unit); EEPROM_WRITE_VAR(i, max_feedrate); EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second); EEPROM_WRITE_VAR(i, acceleration); EEPROM_WRITE_VAR(i, retract_acceleration); EEPROM_WRITE_VAR(i, travel_acceleration); EEPROM_WRITE_VAR(i, minimumfeedrate); EEPROM_WRITE_VAR(i, mintravelfeedrate); EEPROM_WRITE_VAR(i, minsegmenttime); EEPROM_WRITE_VAR(i, max_xy_jerk); EEPROM_WRITE_VAR(i, max_z_jerk); EEPROM_WRITE_VAR(i, max_e_jerk); EEPROM_WRITE_VAR(i, home_offset); uint8_t mesh_num_x = 3; uint8_t mesh_num_y = 3; #ifdef MESH_BED_LEVELING // Compile time test that sizeof(mbl.z_values) is as expected typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1]; mesh_num_x = MESH_NUM_X_POINTS; mesh_num_y = MESH_NUM_Y_POINTS; EEPROM_WRITE_VAR(i, mbl.active); EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE_VAR(i, mesh_num_y); EEPROM_WRITE_VAR(i, mbl.z_values); #else uint8_t dummy_uint8 = 0; EEPROM_WRITE_VAR(i, dummy_uint8); EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE_VAR(i, mesh_num_y); dummy = 0.0f; for (int q=0; q 1 EEPROM_WRITE_VAR(i, retract_length_swap); #else dummy = 0.0f; EEPROM_WRITE_VAR(i, dummy); #endif EEPROM_WRITE_VAR(i, retract_feedrate); EEPROM_WRITE_VAR(i, retract_zlift); EEPROM_WRITE_VAR(i, retract_recover_length); #if EXTRUDERS > 1 EEPROM_WRITE_VAR(i, retract_recover_length_swap); #else dummy = 0.0f; EEPROM_WRITE_VAR(i, dummy); #endif EEPROM_WRITE_VAR(i, retract_recover_feedrate); #endif // FWRETRACT EEPROM_WRITE_VAR(i, volumetric_enabled); // Save filament sizes for (int q = 0; q < 4; q++) { if (q < EXTRUDERS) dummy = filament_size[q]; EEPROM_WRITE_VAR(i, dummy); } char ver2[4] = EEPROM_VERSION; int j = EEPROM_OFFSET; EEPROM_WRITE_VAR(j, ver2); // validate data // Report storage size SERIAL_ECHO_START; SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i); SERIAL_ECHOLNPGM(" bytes)"); } void Config_RetrieveSettings() { int i = EEPROM_OFFSET; char stored_ver[4]; char ver[4] = EEPROM_VERSION; EEPROM_READ_VAR(i, stored_ver); //read stored version // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); if (strncmp(ver, stored_ver, 3) != 0) { Config_ResetDefault(); } else { float dummy = 0; // version number match EEPROM_READ_VAR(i, axis_steps_per_unit); EEPROM_READ_VAR(i, max_feedrate); EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); EEPROM_READ_VAR(i, acceleration); EEPROM_READ_VAR(i, retract_acceleration); EEPROM_READ_VAR(i, travel_acceleration); EEPROM_READ_VAR(i, minimumfeedrate); EEPROM_READ_VAR(i, mintravelfeedrate); EEPROM_READ_VAR(i, minsegmenttime); EEPROM_READ_VAR(i, max_xy_jerk); EEPROM_READ_VAR(i, max_z_jerk); EEPROM_READ_VAR(i, max_e_jerk); EEPROM_READ_VAR(i, home_offset); uint8_t mesh_num_x = 0; uint8_t mesh_num_y = 0; #ifdef MESH_BED_LEVELING EEPROM_READ_VAR(i, mbl.active); EEPROM_READ_VAR(i, mesh_num_x); EEPROM_READ_VAR(i, mesh_num_y); if (mesh_num_x != MESH_NUM_X_POINTS || mesh_num_y != MESH_NUM_Y_POINTS) { mbl.reset(); for (int q=0; q 1 EEPROM_READ_VAR(i, retract_length_swap); #else EEPROM_READ_VAR(i, dummy); #endif EEPROM_READ_VAR(i, retract_feedrate); EEPROM_READ_VAR(i, retract_zlift); EEPROM_READ_VAR(i, retract_recover_length); #if EXTRUDERS > 1 EEPROM_READ_VAR(i, retract_recover_length_swap); #else EEPROM_READ_VAR(i, dummy); #endif EEPROM_READ_VAR(i, retract_recover_feedrate); #endif // FWRETRACT EEPROM_READ_VAR(i, volumetric_enabled); for (int q = 0; q < 4; q++) { EEPROM_READ_VAR(i, dummy); if (q < EXTRUDERS) filament_size[q] = dummy; } calculate_volumetric_multipliers(); // Call updatePID (similar to when we have processed M301) updatePID(); // Report settings retrieved and length SERIAL_ECHO_START; SERIAL_ECHO(ver); SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i); SERIAL_ECHOLNPGM(" bytes)"); } #ifdef EEPROM_CHITCHAT Config_PrintSettings(); #endif } #endif // EEPROM_SETTINGS void Config_ResetDefault() { float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp2[] = DEFAULT_MAX_FEEDRATE; long tmp3[] = DEFAULT_MAX_ACCELERATION; for (uint16_t i = 0; i < NUM_AXIS; i++) { axis_steps_per_unit[i] = tmp1[i]; max_feedrate[i] = tmp2[i]; max_acceleration_units_per_sq_second[i] = tmp3[i]; #ifdef SCARA if (i < sizeof(axis_scaling) / sizeof(*axis_scaling)) axis_scaling[i] = 1; #endif } // steps per sq second need to be updated to agree with the units per sq second reset_acceleration_rates(); acceleration = DEFAULT_ACCELERATION; retract_acceleration = DEFAULT_RETRACT_ACCELERATION; travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; minimumfeedrate = DEFAULT_MINIMUMFEEDRATE; minsegmenttime = DEFAULT_MINSEGMENTTIME; mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE; max_xy_jerk = DEFAULT_XYJERK; max_z_jerk = DEFAULT_ZJERK; max_e_jerk = DEFAULT_EJERK; home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0; #ifdef MESH_BED_LEVELING mbl.active = 0; #endif #ifdef ENABLE_AUTO_BED_LEVELING zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #ifdef DELTA endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0; delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; recalc_delta_settings(delta_radius, delta_diagonal_rod); #elif defined(Z_DUAL_ENDSTOPS) z_endstop_adj = 0; #endif #ifdef ULTIPANEL plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP; plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP; absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP; absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; #endif #ifdef DOGLCD lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #ifdef PIDTEMP #ifdef PID_PARAMS_PER_EXTRUDER for (int e = 0; e < EXTRUDERS; e++) #else int e = 0; // only need to write once #endif { PID_PARAM(Kp, e) = DEFAULT_Kp; PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #ifdef PID_ADD_EXTRUSION_RATE PID_PARAM(Kc, e) = DEFAULT_Kc; #endif } // call updatePID (similar to when we have processed M301) updatePID(); #endif // PIDTEMP #ifdef PIDTEMPBED bedKp = DEFAULT_bedKp; bedKi = scalePID_i(DEFAULT_bedKi); bedKd = scalePID_d(DEFAULT_bedKd); #endif #ifdef FWRETRACT autoretract_enabled = false; retract_length = RETRACT_LENGTH; #if EXTRUDERS > 1 retract_length_swap = RETRACT_LENGTH_SWAP; #endif retract_feedrate = RETRACT_FEEDRATE; retract_zlift = RETRACT_ZLIFT; retract_recover_length = RETRACT_RECOVER_LENGTH; #if EXTRUDERS > 1 retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; #endif retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif volumetric_enabled = false; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 1 filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 2 filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; #if EXTRUDERS > 3 filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif #endif #endif calculate_volumetric_multipliers(); SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); } #ifndef DISABLE_M503 void Config_PrintSettings(bool forReplay) { // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Steps per unit:"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]); SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]); SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]); SERIAL_EOL; SERIAL_ECHO_START; #ifdef SCARA if (!forReplay) { SERIAL_ECHOLNPGM("Scaling factors:"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]); SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]); SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]); SERIAL_EOL; SERIAL_ECHO_START; #endif // SCARA if (!forReplay) { SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]); SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]); SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] ); SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] ); SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] ); SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M204 P", acceleration ); SERIAL_ECHOPAIR(" R", retract_acceleration); SERIAL_ECHOPAIR(" T", travel_acceleration); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M205 S", minimumfeedrate ); SERIAL_ECHOPAIR(" T", mintravelfeedrate ); SERIAL_ECHOPAIR(" B", minsegmenttime ); SERIAL_ECHOPAIR(" X", max_xy_jerk ); SERIAL_ECHOPAIR(" Z", max_z_jerk); SERIAL_ECHOPAIR(" E", max_e_jerk); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS] ); SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS] ); SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS] ); SERIAL_EOL; #ifdef DELTA SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Endstop adjustment (mm):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] ); SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] ); SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] ); SERIAL_EOL; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod ); SERIAL_ECHOPAIR(" R", delta_radius ); SERIAL_ECHOPAIR(" S", delta_segments_per_second ); SERIAL_EOL; #elif defined(Z_DUAL_ENDSTOPS) SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj ); SERIAL_EOL; #endif // DELTA #if defined(PIDTEMP) || defined(PIDTEMPBED) SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("PID settings:"); SERIAL_ECHO_START; } #if defined(PIDTEMP) && defined(PIDTEMPBED) SERIAL_EOL; #endif #ifdef PIDTEMP SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0))); SERIAL_EOL; #endif #ifdef PIDTEMPBED SERIAL_ECHOPAIR(" M304 P", bedKp); // for compatibility with hosts, only echos values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi)); SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd)); SERIAL_EOL; #endif #endif #ifdef FWRETRACT SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M207 S", retract_length); SERIAL_ECHOPAIR(" F", retract_feedrate*60); SERIAL_ECHOPAIR(" Z", retract_zlift); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M208 S", retract_recover_length); SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60); SERIAL_EOL; SERIAL_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0)); SERIAL_EOL; #if EXTRUDERS > 1 if (!forReplay) { SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Multi-extruder settings:"); SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap); SERIAL_EOL; SERIAL_ECHO_START; SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap); SERIAL_EOL; } #endif // EXTRUDERS > 1 #endif // FWRETRACT SERIAL_ECHO_START; if (volumetric_enabled) { if (!forReplay) { SERIAL_ECHOLNPGM("Filament settings:"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M200 D", filament_size[0]); SERIAL_EOL; #if EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]); SERIAL_EOL; #if EXTRUDERS > 2 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_EOL; #if EXTRUDERS > 3 SERIAL_ECHO_START; SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); SERIAL_EOL; #endif #endif #endif } else { if (!forReplay) { SERIAL_ECHOLNPGM("Filament settings: Disabled"); } } #ifdef ENABLE_AUTO_BED_LEVELING SERIAL_ECHO_START; #ifdef CUSTOM_M_CODES if (!forReplay) { SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); SERIAL_ECHO_START; } SERIAL_ECHOPAIR(" M", (unsigned long)CUSTOM_M_CODE_SET_Z_PROBE_OFFSET); SERIAL_ECHOPAIR(" Z", -zprobe_zoffset); #else if (!forReplay) { SERIAL_ECHOPAIR("Z-Probe Offset (mm):", -zprobe_zoffset); } #endif SERIAL_EOL; #endif } #endif // !DISABLE_M503