#ifndef CONFIGURATION_ADV_H #define CONFIGURATION_ADV_H #include "Conditionals.h" // @section temperature //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== #ifdef BED_LIMIT_SWITCHING #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #endif #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control //// Heating sanity check: // This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature // If the temperature has not increased at the end of that period, the target temperature is set to zero. // It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature // differ by at least 2x WATCH_TEMP_INCREASE //#define WATCH_TEMP_PERIOD 40000 //40 seconds //#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds #ifdef PIDTEMP // this adds an experimental additional term to the heating power, proportional to the extrusion speed. // if Kc is chosen well, the additional required power due to increased melting should be compensated. #define PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE #define DEFAULT_Kc (1) //heating power=Kc*(e_speed) #endif #endif //automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode. //The maximum buffered steps/sec of the extruder motor are called "se". //You enter the autotemp mode by a M109 S B F // the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp // you exit the value by any M109 without F* // Also, if the temperature is set to a value Z2 (yes, it is.. think about it) and the Z adjust would be positive. // Play a little bit with small adjustments (0.5mm) and check the behaviour. // The M119 (endstops report) will start reporting the Z2 Endstop as well. #define Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS #define Z2_STEP_PIN E2_STEP_PIN // Stepper to be used to Z2 axis. #define Z2_DIR_PIN E2_DIR_PIN #define Z2_ENABLE_PIN E2_ENABLE_PIN #define Z2_MAX_PIN 36 //Endstop used for Z2 axis. In this case I'm using XMAX in a Rumba Board (pin 36) const bool Z2_MAX_ENDSTOP_INVERTING = false; #define DISABLE_XMAX_ENDSTOP //Better to disable the XMAX to avoid conflict. Just rename "XMAX_ENDSTOP" by the endstop you are using for Z2 axis. #endif #endif // Z_DUAL_STEPPER_DRIVERS // Same again but for Y Axis. //#define Y_DUAL_STEPPER_DRIVERS // Define if the two Y drives need to rotate in opposite directions #define INVERT_Y2_VS_Y_DIR true // Enable this for dual x-carriage printers. // A dual x-carriage design has the advantage that the inactive extruder can be parked which // prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage // allowing faster printing speeds. //#define DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE // Configuration for second X-carriage // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; // the second x-carriage always homes to the maximum endstop. #define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage #define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed #define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position // However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops // without modifying the firmware (through the "M218 T1 X???" command). // Remember: you should set the second extruder x-offset to 0 in your slicer. // Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h) #define X2_ENABLE_PIN 29 #define X2_STEP_PIN 25 #define X2_DIR_PIN 23 // There are a few selectable movement modes for dual x-carriages using M605 S // Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results // as long as it supports dual x-carriages. (M605 S0) // Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so // that additional slicer support is not required. (M605 S1) // Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all // actions of the first x-carriage. This allows the printer to print 2 arbitrary items at // once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) // This is the default power-up mode which can be later using M605. #define DEFAULT_DUAL_X_CARRIAGE_MODE 0 // Default settings in "Auto-park Mode" #define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder #define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder // Default x offset in duplication mode (typically set to half print bed width) #define DEFAULT_DUPLICATION_X_OFFSET 100 #endif //DUAL_X_CARRIAGE // @section homing //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: #define X_HOME_BUMP_MM 5 #define Y_HOME_BUMP_MM 5 #define Z_HOME_BUMP_MM 5 // deltas need the same for all three axis #define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate) //#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially. // @section machine #define AXIS_RELATIVE_MODES {false, false, false, false} // @section machine //By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step. #define INVERT_X_STEP_PIN false #define INVERT_Y_STEP_PIN false #define INVERT_Z_STEP_PIN false #define INVERT_E_STEP_PIN false // Default stepper release if idle. Set to 0 to deactivate. #define DEFAULT_STEPPER_DEACTIVE_TIME 60 #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 // @section lcd #ifdef ULTIPANEL #define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel #define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder #endif // @section extras // minimum time in microseconds that a movement needs to take if the buffer is emptied. #define DEFAULT_MINSEGMENTTIME 20000 // If defined the movements slow down when the look ahead buffer is only half full // (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second) //#define SLOWDOWN // Frequency limit // See nophead's blog for more info // Not working O //#define XY_FREQUENCY_LIMIT 15 // Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end // of the buffer and all stops. This should not be much greater than zero and should only be changed // if unwanted behavior is observed on a user's machine when running at very slow speeds. #define MINIMUM_PLANNER_SPEED 0.05// (mm/sec) // Microstep setting (Only functional when stepper driver microstep pins are connected to MCU. #define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16] // Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards) #define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) // uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro //#define DIGIPOT_I2C // Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8 #define DIGIPOT_I2C_NUM_CHANNELS 8 // actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} //=========================================================================== //=============================Additional Features=========================== //=========================================================================== #define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly #define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value #define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value //#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value //#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/ #define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again // @section lcd #ifdef SDSUPPORT // If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted // You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT // in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should // be commented out otherwise #define SDCARDDETECTINVERTED #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place. #define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order. // if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that. // using: //#define MENU_ADDAUTOSTART // Show a progress bar on HD44780 LCDs for SD printing //#define LCD_PROGRESS_BAR #ifdef LCD_PROGRESS_BAR // Amount of time (ms) to show the bar #define PROGRESS_BAR_BAR_TIME 2000 // Amount of time (ms) to show the status message #define PROGRESS_BAR_MSG_TIME 3000 // Amount of time (ms) to retain the status message (0=forever) #define PROGRESS_MSG_EXPIRE 0 // Enable this to show messages for MSG_TIME then hide them //#define PROGRESS_MSG_ONCE #endif #endif // SDSUPPORT // @section more // The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation. //#define USE_WATCHDOG #ifdef USE_WATCHDOG // If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on. // The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset. // However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled. //#define WATCHDOG_RESET_MANUAL #endif // Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled. //#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED // @section lcd // Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process // it can e.g. be used to change z-positions in the print startup phase in real-time // does not respect endstops! //#define BABYSTEPPING #ifdef BABYSTEPPING #define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions #define BABYSTEP_INVERT_Z false //true for inverse movements in Z #define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements #endif // @section extruder // extruder advance constant (s2/mm3) // // advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2 // // Hooke's law says: force = k * distance // Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant // so: v ^ 2 is proportional to number of steps we advance the extruder //#define ADVANCE #ifdef ADVANCE #define EXTRUDER_ADVANCE_K .0 #define D_FILAMENT 2.85 #define STEPS_MM_E 836 #endif // @section extras // Arc interpretation settings: #define MM_PER_ARC_SEGMENT 1 #define N_ARC_CORRECTION 25 const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement // @section temperature // Control heater 0 and heater 1 in parallel. //#define HEATERS_PARALLEL //=========================================================================== //=============================Buffers ============================ //=========================================================================== // @section hidden // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering. #ifdef SDSUPPORT #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else #define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif // @section more //The ASCII buffer for receiving from the serial: #define MAX_CMD_SIZE 96 #define BUFSIZE 4 // @section fwretract // Firmware based and LCD controlled retract // M207 and M208 can be used to define parameters for the retraction. // The retraction can be called by the slicer using G10 and G11 // until then, intended retractions can be detected by moves that only extrude and the direction. // the moves are than replaced by the firmware controlled ones. // #define FWRETRACT //ONLY PARTIALLY TESTED #ifdef FWRETRACT #define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt #define RETRACT_LENGTH 3 //default retract length (positive mm) #define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change #define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s) #define RETRACT_ZLIFT 0 //default retract Z-lift #define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering) #define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change) #define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s) #endif // Add support for experimental filament exchange support M600; requires display #ifdef ULTIPANEL //#define FILAMENTCHANGEENABLE #ifdef FILAMENTCHANGEENABLE #define FILAMENTCHANGE_XPOS 3 #define FILAMENTCHANGE_YPOS 3 #define FILAMENTCHANGE_ZADD 10 #define FILAMENTCHANGE_FIRSTRETRACT -2 #define FILAMENTCHANGE_FINALRETRACT -100 #endif #endif /******************************************************************************\ * enable this section if you have TMC26X motor drivers. * you need to import the TMC26XStepper library into the arduino IDE for this ******************************************************************************/ // @section tmc //#define HAVE_TMCDRIVER #ifdef HAVE_TMCDRIVER // #define X_IS_TMC #define X_MAX_CURRENT 1000 //in mA #define X_SENSE_RESISTOR 91 //in mOhms #define X_MICROSTEPS 16 //number of microsteps // #define X2_IS_TMC #define X2_MAX_CURRENT 1000 //in mA #define X2_SENSE_RESISTOR 91 //in mOhms #define X2_MICROSTEPS 16 //number of microsteps // #define Y_IS_TMC #define Y_MAX_CURRENT 1000 //in mA #define Y_SENSE_RESISTOR 91 //in mOhms #define Y_MICROSTEPS 16 //number of microsteps // #define Y2_IS_TMC #define Y2_MAX_CURRENT 1000 //in mA #define Y2_SENSE_RESISTOR 91 //in mOhms #define Y2_MICROSTEPS 16 //number of microsteps // #define Z_IS_TMC #define Z_MAX_CURRENT 1000 //in mA #define Z_SENSE_RESISTOR 91 //in mOhms #define Z_MICROSTEPS 16 //number of microsteps // #define Z2_IS_TMC #define Z2_MAX_CURRENT 1000 //in mA #define Z2_SENSE_RESISTOR 91 //in mOhms #define Z2_MICROSTEPS 16 //number of microsteps // #define E0_IS_TMC #define E0_MAX_CURRENT 1000 //in mA #define E0_SENSE_RESISTOR 91 //in mOhms #define E0_MICROSTEPS 16 //number of microsteps // #define E1_IS_TMC #define E1_MAX_CURRENT 1000 //in mA #define E1_SENSE_RESISTOR 91 //in mOhms #define E1_MICROSTEPS 16 //number of microsteps // #define E2_IS_TMC #define E2_MAX_CURRENT 1000 //in mA #define E2_SENSE_RESISTOR 91 //in mOhms #define E2_MICROSTEPS 16 //number of microsteps // #define E3_IS_TMC #define E3_MAX_CURRENT 1000 //in mA #define E3_SENSE_RESISTOR 91 //in mOhms #define E3_MICROSTEPS 16 //number of microsteps #endif /******************************************************************************\ * enable this section if you have L6470 motor drivers. * you need to import the L6470 library into the arduino IDE for this ******************************************************************************/ // @section l6470 //#define HAVE_L6470DRIVER #ifdef HAVE_L6470DRIVER // #define X_IS_L6470 #define X_MICROSTEPS 16 //number of microsteps #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define X2_IS_L6470 #define X2_MICROSTEPS 16 //number of microsteps #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Y_IS_L6470 #define Y_MICROSTEPS 16 //number of microsteps #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Y2_IS_L6470 #define Y2_MICROSTEPS 16 //number of microsteps #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Z_IS_L6470 #define Z_MICROSTEPS 16 //number of microsteps #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define Z2_IS_L6470 #define Z2_MICROSTEPS 16 //number of microsteps #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E0_IS_L6470 #define E0_MICROSTEPS 16 //number of microsteps #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E1_IS_L6470 #define E1_MICROSTEPS 16 //number of microsteps #define E1_MICROSTEPS 16 //number of microsteps #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E2_IS_L6470 #define E2_MICROSTEPS 16 //number of microsteps #define E2_MICROSTEPS 16 //number of microsteps #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall // #define E3_IS_L6470 #define E3_MICROSTEPS 16 //number of microsteps #define E3_MICROSTEPS 16 //number of microsteps #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall #endif #include "Conditionals.h" #include "SanityCheck.h" #endif //CONFIGURATION_ADV_H