// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // License: GPL #ifndef MARLIN_H #define MARLIN_H #define FORCE_INLINE __attribute__((always_inline)) inline #include #include #include #include #include #include #include #include #include #include "fastio.h" #include "Configuration.h" #if (ARDUINO >= 100) #include "Arduino.h" #else #include "WProgram.h" #endif #define BIT(b) (1<<(b)) #define TEST(n,b) (((n)&BIT(b))!=0) #define RADIANS(d) ((d)*M_PI/180.0) #define DEGREES(r) ((d)*180.0/M_PI) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOMORE(v,n) do{ if (v > n) v = n; }while(0) typedef unsigned long millis_t; // Arduino < 1.0.0 does not define this, so we need to do it ourselves #ifndef analogInputToDigitalPin #define analogInputToDigitalPin(p) ((p) + 0xA0) #endif #ifdef AT90USB #include "HardwareSerial.h" #endif #include "MarlinSerial.h" #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif #include "WString.h" #ifdef AT90USB #ifdef BTENABLED #define MYSERIAL bt #else #define MYSERIAL Serial #endif // BTENABLED #else #define MYSERIAL MSerial #endif #define SERIAL_CHAR(x) MYSERIAL.write(x) #define SERIAL_EOL SERIAL_CHAR('\n') #define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x) #define SERIAL_PROTOCOL(x) MYSERIAL.print(x) #define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y) #define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)) #define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x),MYSERIAL.write('\n'); }while(0) #define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)),MYSERIAL.write('\n'); }while(0) extern const char errormagic[] PROGMEM; extern const char echomagic[] PROGMEM; #define SERIAL_ERROR_START serialprintPGM(errormagic) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHO_START serialprintPGM(echomagic) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0) void serial_echopair_P(const char *s_P, float v); void serial_echopair_P(const char *s_P, double v); void serial_echopair_P(const char *s_P, unsigned long v); // Things to write to serial from Program memory. Saves 400 to 2k of RAM. FORCE_INLINE void serialprintPGM(const char *str) { char ch; while ((ch = pgm_read_byte(str))) { MYSERIAL.write(ch); str++; } } void get_command(); void process_commands(); void manage_inactivity(bool ignore_stepper_queue=false); #if defined(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE #define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0) #define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0) #elif HAS_X_ENABLE #define enable_x() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } #else #define enable_x() ; #define disable_x() ; #endif #if HAS_Y_ENABLE #ifdef Y_DUAL_STEPPER_DRIVERS #define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); } #define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #else #define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #endif #else #define enable_y() ; #define disable_y() ; #endif #if HAS_Z_ENABLE #ifdef Z_DUAL_STEPPER_DRIVERS #define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); } #define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #endif #else #define enable_z() ; #define disable_z() ; #endif #if HAS_E0_ENABLE #define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e0() /* nothing */ #define disable_e0() /* nothing */ #endif #if (EXTRUDERS > 1) && HAS_E1_ENABLE #define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e1() /* nothing */ #define disable_e1() /* nothing */ #endif #if (EXTRUDERS > 2) && HAS_E2_ENABLE #define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e2() /* nothing */ #define disable_e2() /* nothing */ #endif #if (EXTRUDERS > 3) && HAS_E3_ENABLE #define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e3() /* nothing */ #define disable_e3() /* nothing */ #endif /** * The axis order in all axis related arrays is X, Y, Z, E */ #define NUM_AXIS 4 /** * Axis indices as enumerated constants * * A_AXIS and B_AXIS are used by COREXY printers * X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots. */ enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; void enable_all_steppers(); void disable_all_steppers(); void FlushSerialRequestResend(); void ClearToSend(); void get_coordinates(); #ifdef DELTA void calculate_delta(float cartesian[3]); #ifdef ENABLE_AUTO_BED_LEVELING extern int delta_grid_spacing[2]; void adjust_delta(float cartesian[3]); #endif extern float delta[3]; #endif #ifdef SCARA void calculate_delta(float cartesian[3]); void calculate_SCARA_forward_Transform(float f_scara[3]); #endif void reset_bed_level(); void prepare_move(); void kill(); void Stop(); #ifdef FILAMENT_RUNOUT_SENSOR void filrunout(); #endif extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueuecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full void enqueuecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void prepare_arc_move(char isclockwise); void clamp_to_software_endstops(float target[3]); extern millis_t previous_cmd_ms; inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } #ifdef FAST_PWM_FAN void setPwmFrequency(uint8_t pin, int val); #endif #ifndef CRITICAL_SECTION_START #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli(); #define CRITICAL_SECTION_END SREG = _sreg; #endif extern float homing_feedrate[]; extern bool axis_relative_modes[]; extern int feedmultiply; extern bool volumetric_enabled; extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float current_position[NUM_AXIS]; extern float home_offset[3]; #ifdef DELTA extern float endstop_adj[3]; extern float delta_radius; extern float delta_diagonal_rod; extern float delta_segments_per_second; void recalc_delta_settings(float radius, float diagonal_rod); #elif defined(Z_DUAL_ENDSTOPS) extern float z_endstop_adj; #endif #ifdef SCARA extern float axis_scaling[3]; // Build size scaling #endif extern float min_pos[3]; extern float max_pos[3]; extern bool axis_known_position[3]; #ifdef ENABLE_AUTO_BED_LEVELING extern float zprobe_zoffset; #endif #ifdef PREVENT_DANGEROUS_EXTRUDE extern float extrude_min_temp; #endif extern int fanSpeed; #ifdef BARICUDA extern int ValvePressure; extern int EtoPPressure; #endif #ifdef FAN_SOFT_PWM extern unsigned char fanSpeedSoftPwm; #endif #ifdef FILAMENT_SENSOR extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75 extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern float filament_width_meas; //holds the filament diameter as accurately measured extern signed char measurement_delay[]; //ring buffer to delay measurement extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code extern float delay_dist; //delay distance counter extern int meas_delay_cm; //delay distance #endif #ifdef FWRETRACT extern bool autoretract_enabled; extern bool retracted[EXTRUDERS]; extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate; #endif extern millis_t starttime; extern millis_t stoptime; // Handling multiple extruders pins extern uint8_t active_extruder; #ifdef DIGIPOT_I2C extern void digipot_i2c_set_current( int channel, float current ); extern void digipot_i2c_init(); #endif extern void calculate_volumetric_multipliers(); #endif //MARLIN_H